「微分積分学 II および演習」後学期統一試験 2008 年 2 月 13 日実施 東京農工大学・数学教室

				宋兄辰上入 -	子・数子教	至			
問題】	次の		にあてはま	る適当な数式	, 記号など	を記入しなる	さい.		
(1)	$z = \frac{z}{x}$	<i>xy</i> + <i>y</i> のとき	, $xz_x + yz_y$:	=					
	$z = \sin z = z = z = z = z = z = z = z = z $		$= u^2 + v^2, \ y$	y=2uv のとき	$\boldsymbol{\xi}$, z_u-z_v	を u, v の関	数として表す	トと	
			$+ u^3 - 9xu +$	- 27 I \$ (x, y) =	=		において		
(*)	極小値			をもつ.					
(4)	点 P(1 $\varphi'(1)$ =	.,1) の近く ⁻	$(x^3 - 3y^3 - 3y^3)$	$+2x^2y = 0$ $p''(1) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	の陰関数と	して与えら	れる関数 y =	= $\varphi(x)$ ic :	ついて ,
(5)	曲面 <i>z</i>	= xy の点 ([1,1,1] にお	する法線の方程	呈式は				
(6)	$D = \{$	$(x,y) \mid x \ge$	$0, y \ge 0, x < 0$	+ y ≤ 1} のと	출 , $\iint_D (1$	(1-x-y)dx	dy =].
(7)	$D = \{$	$(x,y) \mid \frac{1}{x} \le$	$y \le 2, \ 1 \le 3$	x ≤ 2} のとき	, $\iint_D y e^{xy}$	y dx dy =			
(8)	立体Ω	$2 = \{(x, y, z)\}$	$0\mid 0\leq z\leq x$ であ	$y, x^2 + y^2 \le$	$1, \ x \ge 0, \ q$	$y\geq 0\}$ の体和	漬は		
(9)	べき級	数 $\sum_{n=1}^{\infty} \frac{n^n}{n!} x$	n の収束半径	Elt	7	ご ある .			
(10)	$\log(1 -$	$+x) = \sum_{n=1}^{\infty} \frac{1}{2^n}$	$\frac{(-1)^{n+1}}{n}x^n \ ($	x <1) を用し	13と , log	$x(2+x^2)$ Os	アクローリン	(べき級数)	展開の
	収束半			ごあり, x^4 の係			である.		
						,			

1

氏名:

学籍番号:

学科: