Course Name [科目名]	Separation Process
Instructor Name [教員]	Hideaki Tokuyama, Hiroshi Takiyama
Office Hours and Contact Information	Office hours: appointments by e-mail
「オフィスアワー、連絡先」	Location: 1-215, e-mail: htoku@cc.tuat.ac.jp
	or Location: BASE-229, e-mail: htakiyam@cc.tuat.ac.jp
Course Structure [授業形態]	Lecture
Course Credits [単位数]	3
Course Overview [概要]	Introduction to unit operations in chemical engineering: evaporation,
Course Overview [城安]	liquid-liquid separation, liquid vapor separation, liquid-liquid
	extraction, solid-liquid separation, and leaching.
Course Key Words [キーワード]	Separation design, Equilibrium, Kinetics, Mass balance
Academic Goal [目標]	1. able to understand equilibrium, kinetics and mass balance.
Academic Goai [日標]	2. able to design the separation process.
Course Schedule [授業内容]	doi: do design the separation process. Guidance
Course Schedule [技术内存]	2. Diffusion
	3. Gas absorption, Part I
	4. Gas absorption, Part II
	5. Gas absorption, Part III
	6. Distillation, Part I
	7. Distillation, Part II
	8. Examination I
	9. Thermodynamics for separation process,
	10. Application of thermodynamics
	11. Multiphase equilibrium, Part I
	12. Multiphase equilibrium, Part II
	13. Fundamentals of solid-liquid separation
	14. Application of solid-liquid separation
	15. Examination II
Textbooks, References,	J. D. Seader, Ernest J. Henley, D. Keith Roper, Separation Process
and Supplementary Materials	Principles, 3rd Edition, Wiley (2011). Handouts and materials given
	on or before the lectures.
Grading Philosophy	Examinations
(Percentage / Criteria / Methodology)	
 [成績評価の方法]	
Other	
(i.e. Expectations on Classroom	
Conduct and Decorum etc.)	
[その他]	

Course Name [科目名]	Environmental Engineering
Instructor Name [教員]	Masaaki Hosomi, Akihiko Terada
Office Hours and Contact Information	Office hours: appointments by e-mail
[オフィスアワー、連絡先]	Location: 4-320, e-mail: akte@cc.tuat.ac.jp
Course Structure [授業形態]	Lecture
Course Credits [単位数]	3
Course Overview [概要]	This courses introduces the essences and principles of environmental
	engineering and sustainability. Throughout the course, students will
	learn diversified environmental problems and countermeasures, e.g.,
	water/wastewater technologies, concept of recycling-oriented society,
	risk assessment and sustainability.
Course Key Words [キーワード]	Environmental pollution, water, wastewater, sustainability, risk
Academic Goal [目標]	able to understand diversified environmental problems
Treatenine Coan [] [x]	2. able to appreciate principles of countermeasures for environmental
	pollution.
	3. able to understand the significance of holistic approach for
	recycling-oriented society and environmental sustainability.
Course Schedule [授業内容]	1. Guidance -Environmental problem and environmental engineering-
	2. Introduction of water/wastewater engineering
	3. Physicochemical wastewater treatment
	4. Biological water/wastewater treatment 1
	5. Biological wastewater treatment 2
	6. Wetland
	7. Water reclamation and desalination
	8. Examination I
	9. Air pollution
	10. Concept of recycling-oriented society
	11. Risk assessment 1
	12. Risk assessment 2
	13. Environmental sustainability 1
	14. Environmental sustainability 2
	15. Examination II
Textbooks, References,	1.Tchobanoglous, G., Burton, F. L. and Stensel, H. D. (2002)
and Supplementary Materials	Wastewater Engineering. Treatment and Reuse, 4 ed. McGraw-Hill
[テキスト、参考書、その他]	Publishing Co, New York NY. Handouts will be given at a lecture.
Grading Philosophy	Periodical reports and examinations
(Percentage / Criteria / Methodology)	
[成績評価の方法]	
Other	
(i.e. Expectations on Classroom	
Conduct and Decorum etc.)	
[その他]	

Course Name [科目名]	Chemical Reaction Engineering
Instructor Name [教員]	Yuichiro Nagatsu, Eika Qian, Hirohide Kamiya
Office Hours and Contact Information	Office hours: appointments by e-mail
[オフィスアワー、連絡先]	Location: 4-317, e-mail: nagatsu@cc.tuat.ac.jp
Course Structure [授業形態]	Lecture
Course Credits [単位数]	3
Course Overview [概要]	This course provides teaches students how to treat Kinetics of
	homogenous reaction, Reactor design, Temperature and pressure
	effects, and Solid Catalyzed reactions.
Course Key Words [キーワード]	Reaction design, Kinetics, Solid Catalyzed reactions
Academic Goal [目標]	1.able to understand how to operate homogeneous reactions in ideal
2, 7, 7, 7	reactors
	2.able to understand how to operate reactions catalyzed by solids
Course Schedule [授業内容]	Overview of chemical reaction engineering
	2. Kinetics of Homogeneous reactions
	3. Interpretation of batch reactor data
	4. Introduction to reaction design
	5. Ideal reactors of a single reaction
	6. Design for single reactions
	7. Design for parallel reactions
	8. Examination I
	9. Potpourri of multiple reactions
	10. Temperature and pressure effects
	11. Choosing the right kind of reactor
	12. Heterogeneous reactions – Introduction
	13. Solid catalyzed reactions I
	14. Solid catalyzed reactions II
	15. Examination II
Textbooks, References,	O. Levenspiel, Chemical Reaction Engineering 3rd Edition, John
and Supplementary Materials	Wiley & Sons (1999). Handouts and materials given on or before the
[テキスト、参考書、その他]	lectures.
Grading Philosophy	Examinations
(Percentage / Criteria / Methodology)	
[成績評価の方法]	
Other	
(i.e. Expectations on Classroom	
Conduct and Decorum etc.)	
[その他]	

Course Name [科目名]	Chemical Engineering Laboratory
Instructor Name [教員]	Akihiko Terada, Shohei Riya, Shoji Kudo
Office Hours and Contact Information	Office hours: appointments by e-mail
[オフィスアワー、連絡先]	Location: 4-320, e-mail: akte@cc.tuat.ac.jp
Course Structure [授業形態]	Laboratory work
Course Credits [単位数]	3
Course Overview [概要]	This laboratory course will provide the opportunity for students to train basic methodologies and skills regarding quantification of environmental pollution and to demonstrate measurements of environmental samples.
Course Key Words [キーワード]	BOD, COD, Biokinetic parameter, coagulation, sedimentation, pH, DO
Academic Goal [目標]	1. able to set up experimental design to quantify the degree of water pollution
	2. able to appreciate solid-liquid separation based on gravity
	3. able to analyze experimental data based on mass balance and
	reaction kinetics
	4. able to estimate biokinetic parameters by respirometry
	5. able to learn state-of-the-art technologies to detect/quantify
	functional genes
Course Schedule [授業内容]	1. Guidance
	2-5. Measurement of dissolved and solid constituents- BOD, COD,
	MLSS, etc
	6-9. Biokinetic parameter estimation- Michaelis-Menten kinetics and
	Monod kinetics
	10-13. Molecular techniques- PCR, quantitative PCR and gel
	electrophoresis
	14-15. Quiz
Textbooks, References,	None
and Supplementary Materials	
[テキスト、参考書、その他]	
Grading Philosophy	Experimental reports and quiz
(Percentage / Criteria / Methodology)	
[成績評価の方法]	
Other	
(i.e. Expectations on Classroom	
Conduct and Decorum etc.)	
[その他]	

Course Name [科目名]	Physical Chemistry
Instructor Name [教員]	Makoto Sakurai, Chihiro Fushimi, Susumu Inasawa
Office Hours and Contact Information	Office hours: Wednesday 5-6 PM,
[オフィスアワー、連絡先]	M. Sarakurai, Building 4-319, sakuraim@cc.tuat.ac.jp
	C. Fushimi, Building 4-322, cfushimi@cc.tuat.ac.jp
	S. Inasawa, Building BASE-232, inasawa@cc.tuat.ac.jp
Course Structure [授業形態]	Lecture
Course Credits [単位数]	3
Course Overview [概要]	Introduction to engineering thermodynamics, phase equilibria, basic
2,772.1	electrochemistry, kinetics, reaction rate and adsorption.
Course Key Words [キーワード]	thermodynamics, equilibria, Gibbs free energy, rate constant, Arrehenius,
	rate-determining step
Academic Goal [目標]	1. To understand thermodynamics and equilibria
	2. To understand kinetics including reaction rate and mass transfer
Course Schedule [授業内容]	1. Guidance and The First law
	2. Energy balance of closed systems
	3. Energy balance of control volumes
	4. The Second law I: Entropy
	5. The Second law II: Cycle
	6. Chemical potential, The location of phase boundaries
	7. The thermodynamic description of mixtures, Raoult's law, Henry's law
	8. The properties of solutions, Activities
	9. The response of equilibria to the conditions
	10. Equilibrium electrochemistry
	11. Molecular collisions
	12. Diffusion
	13. Chemical reaction
	14. Adsorption and surface reaction
	15. Examination
Textbooks, References,	1. Y. A. Cengel and M. A. Boles "Thermodynamics, An Engineering
and Supplementary Materials	Approach Sixth Edition, McGraw Hill, Singapore, 2007
[テキスト、参考書、その他]	2. P. Atkins, J. De Paula "Atkins' Physical Chemistry" 9th edition,
	Oxford, China, 2010
Grading Philosophy	Examination
(Percentage / Criteria / Methodology)	
[成績評価の方法]	
Other	
(i.e. Expectations on Classroom	
Conduct and Decorum etc.)	
[その他]	

Course Name [科目名]	Optimization in Chemical Processes
Instructor Name [教員]	Yoshiyuki Yamashita, Wuled Lenggoro, Teiji Kitajima
Office Hours and Contact Information	Office hours: appointments by e-mail
[オフィスアワー、連絡先]	Location: 13-804, e-mail: yama_pse@cc.tuat.ac.jp (Yamashita)
(5 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Base-224, e-mail: lenggoro@cc.tuat.ac.jp (Lenggoro)
	1-108, e-mail: teiji@cc.tuat.ac.jp (Kitajima)
Course Structure [授業形態]	Lecture
Course Credits [単位数]	3
Course Overview [概要]	This course will provide the student with the ability to formulate, solve
	and interpret meaningful optimization problems in engineering, science
	and business.
Course Key Words [キーワード]	Optimization, Decision Making, Decision Support
Academic Goal [目標]	1. able to understand and formulate optimization problems.
	2. able to solve the optimization problem.
Course Schedule [授業内容]	Introduction to Process Optimization (by Dr. Yamashita)
	What optimization is all about
	Various types of optimization problems
	Procedure for solving optimization problems
	Formulation of Optimization Problems (by Dr. Lenggoro)
	Overview of mathematical modeling
	Formulation of optimization problems
	Applications of optimization problems
	Discrete Optimization and Applications (by Dr. Kitajima)
	Overview of discrete optimization
	Formulation of the problems
	Solution of various applications
Textbooks, References,	Thomas F. Edgar, David M. Himmelblau and Leon S. Lasdon,
and Supplementary Materials	Optimization of Chemical Processes, 2 nd edition, McGraw-Hill (2001).
[テキスト、参考書、その他]	Handouts and materials given on or before the lectures.
Grading Philosophy	Examinations, Hands-on Exercises, and Reports
(Percentage / Criteria / Methodology)	
[成績評価の方法]	
Other	
(i.e. Expectations on Classroom	
Conduct and Decorum etc.)	
[その他]	